Probabilistic crisscross error correction

نویسنده

  • Ron M. Roth
چکیده

The crisscross error model in data arrays is considered, where the corrupted symbols are confined to a prescribed number of rows or columns (or both). Under the additional assumption that the corrupted entries are uniformly distributed over the channel alphabet, and by allowing a small decoding error probability, a coding scheme is presented where the redundancy can get close to one half the redundancy required in minimum-distance decoding of crisscross errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comments on 'Maximum-rank array codes and their application to crisscross error correction'

cates that C, is inserted between vector numbers 3 and 4 in L(2). (term rank is equivalent to the weight of E defined in Introduction of R. M. Roth’s paper)-were investigated too in a few papers since ForC,,1(1,0)=00 10 landZ(l,l)=O 10 1 O,whichindi1972, see for example [2]. cates that C, is inserted between vector numbers 9 and 10 in L(2). Optimal codes for array (“crisscross”) error correctio...

متن کامل

Error Performance Analysis of Maximum Rank Distance Codes

In this paper, we first introduce the concept of elementary linear subspace, which has similar properties to those of a set of coordinates. We then use elementary linear subspaces to derive properties of maximum rank distance (MRD) codes that parallel those of maximum distance separable (MDS) codes. Using these properties, we show that, for MRD codes with error correction capability t, the deco...

متن کامل

Maximum-rank array codes and their application to crisscross error correction

A μ-[n× n, k] array code C over a field F is a k-dimensional linear space of n× n matrices over F such that every nonzero matrix in C has rank ≥ μ. It is first shown that the dimension of such array codes must satisfy the Singleton-like bound k ≤ n(n−μ+1). A family of so-called maximum-rank μ-[n × n, k = n(n − μ + 1)] array codes is then constructed over every finite field F and for every n and...

متن کامل

Coding Schemes for Crisscross Error Patterns

This paper addresses two coding schemes which can handle emerging errors with crisscross patterns. First, a code with maximum rank distance, so-called Rank-Codes, is described and a modified Berlekamp-Massey algorithm is provided. Secondly, a Permutation Code based coding scheme for crisscross error patterns is presented. The influence of different types of noise are also discussed.

متن کامل

A probabilistic approach to AMDF pitch detection

We present a probabilistic error correction technique to be used with an average magnitude di erence function (AMDF) based pitch detector. This error correction routine provides a very simple method to correct errors in pitch period estimation. Used in conjunction with the computationally e cient AMDF, the result is a fast and accurate pitch detector. In performance tests on the CSTR (Center fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1997